Usage
This section provides a minimal example of displaying a clustered matrix with Celldega.
Clustergram parquet_data
The Clustergram
widget accepts a parquet_data
argument that contains the network encoded as Parquet tables. Using this approach avoids transferring large JSON structures to the browser. You can obtain this dictionary from a Matrix
instance using Matrix.export_viz_parquet()
.
import celldega as dega
import pandas as pd
# Load expression data
df = pd.read_parquet("df_sig.parquet")
# Create and cluster the matrix
mat = dega.clust.Matrix(df, name="demo")
mat.clust()
# Export to Parquet-encoded bytes
pq_data = mat.export_viz_parquet()
# Initialize widget with parquet_data
cgm = dega.viz.Clustergram(parquet_data=pq_data, width=500, height=500)
cgm
Clustergram
can also be initialized directly from a Matrix
instance which internally uses export_viz_parquet
. Passing a legacy JSON network
is now deprecated.