Skip to content

Viz Module API Reference

Widget Classes

The Clustergram widget accepts a parquet_data argument for efficient initialization. Use Matrix.export_viz_parquet to generate this data from a clustered matrix. Passing a JSON network object is deprecated; pass matrix or parquet_data instead.

Module for visualization

Clustergram

Bases: AnyWidget

Minimal version of the Clustergram widget.

  • Frontend still gets: matrix/parquet data, row/col names, manual_cat, manual_cat_config, etc.
  • Manual categories are treated as a simple JSON string.
  • All the old DataFrame-based manual_cat plumbing is removed.
Source code in src/celldega/viz/widget.py
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
class Clustergram(anywidget.AnyWidget):
    """
    Minimal version of the Clustergram widget.

    - Frontend still gets: matrix/parquet data, row/col names, manual_cat,
      manual_cat_config, etc.
    - Manual categories are treated as a simple JSON string.
    - All the old DataFrame-based manual_cat plumbing is removed.
    """

    _esm = Path(__file__).parent / "../static" / "widget.js"
    _css = Path(__file__).parent / "../static" / "widget.css"

    # --- core traits used by JS -------------------------------------------------
    value = traitlets.Int(0).tag(sync=True)
    component = traitlets.Unicode("Matrix").tag(sync=True)

    network = traitlets.Dict({}).tag(sync=True)
    network_meta = traitlets.Dict({}).tag(sync=True)

    width = traitlets.Int(500).tag(sync=True)
    height = traitlets.Int(500).tag(sync=True)

    click_info = traitlets.Dict({}).tag(sync=True)

    # Generic row/col selection traitlets
    selected_rows = traitlets.List(default_value=[]).tag(sync=True)
    selected_cols = traitlets.List(default_value=[]).tag(sync=True)

    # Legacy traitlet for gene selection (copied from selected_rows when row entity is 'gene')
    selected_genes = traitlets.List(default_value=[]).tag(sync=True)
    top_n_genes = traitlets.Int(50).tag(sync=True)

    row_names = traitlets.List(default_value=[]).tag(sync=True)
    col_names = traitlets.List(default_value=[]).tag(sync=True)

    # backend-only DataFrames derived from `manual_cat`
    row_manual_df = traitlets.Instance(pd.DataFrame, allow_none=True)
    col_manual_df = traitlets.Instance(pd.DataFrame, allow_none=True)
    row_manual_colors_df = traitlets.Instance(pd.DataFrame, allow_none=True)
    col_manual_colors_df = traitlets.Instance(pd.DataFrame, allow_none=True)

    # Flags that control whether manual categories are shown in the UI.
    manual_row_cat = ManualAttributeTrait(default_name=_DEFAULT_MANUAL_ATTRIBUTE_TITLES["row"]).tag(
        sync=True
    )
    manual_col_cat = ManualAttributeTrait(default_name=_DEFAULT_MANUAL_ATTRIBUTE_TITLES["col"]).tag(
        sync=True
    )

    # Global color registry (JS may write here; Python can also seed it)
    category_colors = traitlets.Dict(default_value={}).tag(sync=True)

    # Canonical manual category payload as JSON string.
    manual_cat = traitlets.Unicode("{}").tag(sync=True)

    # Small JSON object describing default attribute names, preferred
    # categories, etc.
    manual_cat_config = traitlets.Unicode("{}").tag(sync=True)

    def __init__(self, **kwargs):
        """
        Parameters
        ----------
        parquet_data : dict, optional
            Pre-exported parquet payload from your matrix object.
        matrix : object, optional
            If provided and has .export_viz_parquet(), we'll call that.
        network : dict, optional
            Deprecated path, kept only for backwards-compatibility.
        """
        pq_data = kwargs.pop("parquet_data", None)

        if "network" in kwargs:
            warnings.warn(
                "`network` argument is deprecated. Use `matrix` or `parquet_data` instead.",
                DeprecationWarning,
                stacklevel=2,
            )

        manual_row_flag = kwargs.pop("manual_row_cat", "")
        manual_col_flag = kwargs.pop("manual_col_cat", "")

        # Store matrix reference for later use (e.g., multi-gene expression calculations)
        self._matrix = None

        if pq_data is None:
            matrix = kwargs.pop("matrix", None)
            if matrix is not None:
                self._matrix = matrix  # Store reference for multi-gene calculations
                pq_data = matrix.export_viz_parquet()
            elif "network" not in kwargs:
                raise ValueError(
                    "You must pass either `network`, `parquet_data`, or `matrix` (for fallback). "
                    "If both `network` and `matrix` are provided, `matrix` will be prioritized."
                )

        # Infer name from pq_data or network
        name = kwargs.get("network", {}).get("name", None)
        if pq_data is not None:
            meta = pq_data.get("meta", {})
            name = meta.get("name", name)
            kwargs.setdefault("network_meta", meta)

            # Entity info can be dict or string - serialize to JSON for frontend
            row_entity = pq_data.get("row_entity", {"entity": "gene", "attr": "name"})
            col_entity = pq_data.get("col_entity", {"entity": "cell", "attr": "leiden"})

            # Convert to JSON strings for syncing with JS
            row_entity_json = json.dumps(row_entity) if isinstance(row_entity, dict) else row_entity
            col_entity_json = json.dumps(col_entity) if isinstance(col_entity, dict) else col_entity

            parquet_traits = {
                "mat_parquet": traitlets.Bytes(pq_data.get("mat", b"")).tag(sync=True),
                "row_nodes_parquet": traitlets.Bytes(pq_data.get("row_nodes", b"")).tag(sync=True),
                "col_nodes_parquet": traitlets.Bytes(pq_data.get("col_nodes", b"")).tag(sync=True),
                "row_linkage_parquet": traitlets.Bytes(pq_data.get("row_linkage", b"")).tag(
                    sync=True
                ),
                "col_linkage_parquet": traitlets.Bytes(pq_data.get("col_linkage", b"")).tag(
                    sync=True
                ),
                # Entity info as JSON strings
                "row_entity": traitlets.Unicode(row_entity_json).tag(sync=True),
                "col_entity": traitlets.Unicode(col_entity_json).tag(sync=True),
            }
            self.add_traits(**parquet_traits)

        old_widget = _clustergram_registry.get(name)
        if old_widget:
            with suppress(Exception):
                old_widget.close()

        kwargs["name"] = name
        kwargs["manual_row_cat"] = manual_row_flag
        kwargs["manual_col_cat"] = manual_col_flag

        super().__init__(**kwargs)
        _clustergram_registry[name] = self

        # ------------------------------------------------------------------
        # Initialize a simple manual_cat_config from the flags, if the user
        # didn't pass anything explicit.
        # ------------------------------------------------------------------
        config = {"row": None, "col": None}

        if manual_row_flag:
            config["row"] = {
                "attribute": str(manual_row_flag),
                "preferred": [],
                "locked": True,
            }

        if manual_col_flag:
            config["col"] = {
                "attribute": str(manual_col_flag),
                "preferred": [],
                "locked": True,
            }

        # Only overwrite if it's still the default "{}" / empty
        if (config["row"] is not None or config["col"] is not None) and (
            not self.manual_cat_config or self.manual_cat_config == "{}"
        ):
            self.manual_cat_config = json.dumps(config)

        # Seed category_colors from network_meta if available
        base_colors = dict(self.network_meta.get("global_cat_colors", {}))
        if getattr(self, "category_colors", None):
            base_colors.update(self.category_colors)
        self._category_colors = base_colors
        self.category_colors = deepcopy(self._category_colors)

    @property
    def manual_cat_dict(self) -> dict:
        """Convenience accessor: parsed JSON from manual_cat."""
        try:
            return json.loads(self.manual_cat or "{}")
        except json.JSONDecodeError:
            return {}

    # ------------------------------------------------------------------
    # PY-only DataFrames derived from manual_cat JSON
    # ------------------------------------------------------------------
    @traitlets.observe("manual_cat")
    def _on_manual_cat(self, change) -> None:
        """Rebuild backend DataFrames when manual_cat JSON changes."""
        raw = change.get("new") or "{}"
        try:
            payload = json.loads(raw)
        except json.JSONDecodeError:
            payload = {}

        self._update_manual_cat_frames(payload)

    def _update_manual_cat_frames(self, payload: dict) -> None:
        """
        Build four DataFrames from the manual_cat payload:

        - row_manual_df: index=row_id, columns=attributes, values=category strings
        - col_manual_df: index=col_id, columns=attributes, values=category strings
        - row_manual_colors_df: index=category, columns=attributes, values=hex colors
        - col_manual_colors_df: index=category, columns=attributes, values=hex colors
        """
        for axis in ("row", "col"):
            axis_payload = payload.get(axis) or {}
            if not axis_payload:
                setattr(self, f"{axis}_manual_df", None)
                setattr(self, f"{axis}_manual_colors_df", None)
                continue

            # union of all indices for this axis
            index_labels = sorted(
                {str(name) for attr in axis_payload.values() for name in (attr.get("values") or {})}
            )

            if index_labels:
                idx = pd.Index(index_labels, name=f"{axis}_id")
                data = {}
                for attr_name, spec in axis_payload.items():
                    values = spec.get("values") or {}
                    series = pd.Series(
                        [values.get(label, _MANUAL_FILL_VALUE) for label in index_labels],
                        index=idx,
                        dtype=object,
                    )
                    data[str(attr_name)] = series
                manual_df = pd.DataFrame(data, index=idx)
            else:
                manual_df = None

            # colors: category -> hex per attribute
            cat_labels = sorted(
                {str(cat) for attr in axis_payload.values() for cat in (attr.get("colors") or {})}
            )

            if cat_labels:
                cat_idx = pd.Index(cat_labels, name="category")
                color_data = {}
                for attr_name, spec in axis_payload.items():
                    cmap = spec.get("colors") or {}
                    series = pd.Series(
                        [cmap.get(cat, None) for cat in cat_labels],
                        index=cat_idx,
                        dtype=object,
                    )
                    color_data[str(attr_name)] = series
                colors_df = pd.DataFrame(color_data, index=cat_idx)
            else:
                colors_df = None

            setattr(self, f"{axis}_manual_df", manual_df)
            setattr(self, f"{axis}_manual_colors_df", colors_df)

    def close(self):  # pragma: no cover - cleanup depends on JS
        """Close the widget and notify the frontend to release resources."""
        with suppress(Exception):
            self.send({"event": "finalize"})
        super().close()

manual_cat_dict property

Convenience accessor: parsed JSON from manual_cat.

__init__(**kwargs)

Parameters

parquet_data : dict, optional Pre-exported parquet payload from your matrix object. matrix : object, optional If provided and has .export_viz_parquet(), we'll call that. network : dict, optional Deprecated path, kept only for backwards-compatibility.

Source code in src/celldega/viz/widget.py
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
def __init__(self, **kwargs):
    """
    Parameters
    ----------
    parquet_data : dict, optional
        Pre-exported parquet payload from your matrix object.
    matrix : object, optional
        If provided and has .export_viz_parquet(), we'll call that.
    network : dict, optional
        Deprecated path, kept only for backwards-compatibility.
    """
    pq_data = kwargs.pop("parquet_data", None)

    if "network" in kwargs:
        warnings.warn(
            "`network` argument is deprecated. Use `matrix` or `parquet_data` instead.",
            DeprecationWarning,
            stacklevel=2,
        )

    manual_row_flag = kwargs.pop("manual_row_cat", "")
    manual_col_flag = kwargs.pop("manual_col_cat", "")

    # Store matrix reference for later use (e.g., multi-gene expression calculations)
    self._matrix = None

    if pq_data is None:
        matrix = kwargs.pop("matrix", None)
        if matrix is not None:
            self._matrix = matrix  # Store reference for multi-gene calculations
            pq_data = matrix.export_viz_parquet()
        elif "network" not in kwargs:
            raise ValueError(
                "You must pass either `network`, `parquet_data`, or `matrix` (for fallback). "
                "If both `network` and `matrix` are provided, `matrix` will be prioritized."
            )

    # Infer name from pq_data or network
    name = kwargs.get("network", {}).get("name", None)
    if pq_data is not None:
        meta = pq_data.get("meta", {})
        name = meta.get("name", name)
        kwargs.setdefault("network_meta", meta)

        # Entity info can be dict or string - serialize to JSON for frontend
        row_entity = pq_data.get("row_entity", {"entity": "gene", "attr": "name"})
        col_entity = pq_data.get("col_entity", {"entity": "cell", "attr": "leiden"})

        # Convert to JSON strings for syncing with JS
        row_entity_json = json.dumps(row_entity) if isinstance(row_entity, dict) else row_entity
        col_entity_json = json.dumps(col_entity) if isinstance(col_entity, dict) else col_entity

        parquet_traits = {
            "mat_parquet": traitlets.Bytes(pq_data.get("mat", b"")).tag(sync=True),
            "row_nodes_parquet": traitlets.Bytes(pq_data.get("row_nodes", b"")).tag(sync=True),
            "col_nodes_parquet": traitlets.Bytes(pq_data.get("col_nodes", b"")).tag(sync=True),
            "row_linkage_parquet": traitlets.Bytes(pq_data.get("row_linkage", b"")).tag(
                sync=True
            ),
            "col_linkage_parquet": traitlets.Bytes(pq_data.get("col_linkage", b"")).tag(
                sync=True
            ),
            # Entity info as JSON strings
            "row_entity": traitlets.Unicode(row_entity_json).tag(sync=True),
            "col_entity": traitlets.Unicode(col_entity_json).tag(sync=True),
        }
        self.add_traits(**parquet_traits)

    old_widget = _clustergram_registry.get(name)
    if old_widget:
        with suppress(Exception):
            old_widget.close()

    kwargs["name"] = name
    kwargs["manual_row_cat"] = manual_row_flag
    kwargs["manual_col_cat"] = manual_col_flag

    super().__init__(**kwargs)
    _clustergram_registry[name] = self

    # ------------------------------------------------------------------
    # Initialize a simple manual_cat_config from the flags, if the user
    # didn't pass anything explicit.
    # ------------------------------------------------------------------
    config = {"row": None, "col": None}

    if manual_row_flag:
        config["row"] = {
            "attribute": str(manual_row_flag),
            "preferred": [],
            "locked": True,
        }

    if manual_col_flag:
        config["col"] = {
            "attribute": str(manual_col_flag),
            "preferred": [],
            "locked": True,
        }

    # Only overwrite if it's still the default "{}" / empty
    if (config["row"] is not None or config["col"] is not None) and (
        not self.manual_cat_config or self.manual_cat_config == "{}"
    ):
        self.manual_cat_config = json.dumps(config)

    # Seed category_colors from network_meta if available
    base_colors = dict(self.network_meta.get("global_cat_colors", {}))
    if getattr(self, "category_colors", None):
        base_colors.update(self.category_colors)
    self._category_colors = base_colors
    self.category_colors = deepcopy(self._category_colors)

close()

Close the widget and notify the frontend to release resources.

Source code in src/celldega/viz/widget.py
975
976
977
978
979
def close(self):  # pragma: no cover - cleanup depends on JS
    """Close the widget and notify the frontend to release resources."""
    with suppress(Exception):
        self.send({"event": "finalize"})
    super().close()

Enrich

Bases: AnyWidget

A widget for interactive enrichment analysis using the Enrichr API.

Allows users to select a gene list, choose an enrichment library, and specify the number of terms to display. Automatically replaces older widgets with the same name to prevent notebook bloat.

Source code in src/celldega/viz/widget.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
class Enrich(anywidget.AnyWidget):
    """
    A widget for interactive enrichment analysis using the Enrichr API.

    Allows users to select a gene list, choose an enrichment library, and specify
    the number of terms to display. Automatically replaces older widgets with the
    same name to prevent notebook bloat.
    """

    _esm = Path(__file__).parent / "../static" / "widget.js"
    _css = Path(__file__).parent / "../static" / "widget.css"

    value = traitlets.Int(0).tag(sync=True)
    width = traitlets.Int(650).tag(sync=True)
    height = traitlets.Int(650).tag(sync=True)

    component = traitlets.Unicode("Enrich").tag(sync=True)

    gene_list = traitlets.List(default_value=[]).tag(sync=True)
    background_list = traitlets.List(allow_none=True, default_value=None).tag(sync=True)

    available_libs = traitlets.List(
        [
            "CellMarker_2024",
            "ARCHS4_Tissues",
            "GO_Biological_Process_2025",
            "GO_Cellular_Component_2025",
            "GO_Molecular_Function_2025",
            "GTEx_Tissue_Expression_Up",
            "KEGG_2019_Human",
            "ChEA_2022",
            "MGI_Mammalian_Phenotype_Level_4_2024",
            "Disease_Perturbations_from_GEO_up",
            "Ligand_Perturbations_from_GEO_up",
            "LINCS_L1000_Chem_Pert_down",
            "Ligand_Perturbations_from_GEO_down",
        ]
    ).tag(sync=True)

    inst_lib = traitlets.Unicode("CellMarker_2024").tag(sync=True)
    num_terms = traitlets.Int(50).tag(sync=True)

    term_genes = traitlets.List(default_value=[]).tag(sync=True)
    selected_term = traitlets.Unicode("Select Term").tag(sync=True)
    focused_gene = traitlets.Unicode("").tag(sync=True)

    def __init__(self, **kwargs):
        name = kwargs.pop("name", "default")
        old_widget = _enrich_registry.get(name)
        if old_widget:
            with suppress(Exception):
                old_widget.close()

        kwargs["name"] = name
        super().__init__(**kwargs)
        _enrich_registry[name] = self

    def close(self):  # pragma: no cover - cleanup depends on JS
        with suppress(Exception):
            self.send({"event": "finalize"})
        super().close()

Landscape

Bases: AnyWidget

A widget for interactive visualization of spatial omics data. This widget currently supports iST (Xenium and MERSCOPE) and sST (Visium HD data, with and without cell segmentation).

Parameters:

Name Type Description Default
ini_x float

The initial x-coordinate of the view.

required
ini_y float

The initial y-coordinate of the view.

required
ini_zoom float

The initial zoom level of the view.

required
rotation_orbit float

Rotating angle around orbit axis for point-cloud views.

required
rotation_x float

Rotating angle around X axis for point-cloud views.

required
token str

The token traitlet.

required
base_url str or list

The base URL(s) for the widget. Can be a single string or a list of dicts with 'url' and 'label' keys for multiple datasets. Example: [{'url': 'http://...', 'label': 'Dataset1'}, ...] You can also pass a simple list of URL strings.

required
dataset_names list

Short names for the datasets to display in the dropdown selector. Should match the length of base_urls. Example: ['Brain', 'Kidney'] for two datasets.

required
rotate float

Degrees to rotate the 2D landscape visualization.

required
AnnData AnnData

AnnData object to derive metadata from.

required
dataset_name str

The name of the dataset to visualize. This will show up in the user interface bar.

required
cell_name_prefix bool

If True, cell names in adata.obs.index are assumed to have a dataset prefix (e.g., "dataset-name_cell-name") that should be trimmed when mapping to LandscapeFiles. Default: False.

required

The AnnData input automatically extracts cell attributes (e.g., leiden clusters), the corresponding colors (or derives them when missing), and any available UMAP coordinates.

Source code in src/celldega/viz/widget.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
class Landscape(anywidget.AnyWidget):
    """
    A widget for interactive visualization of spatial omics data. This widget
    currently supports iST (Xenium and MERSCOPE) and sST (Visium HD data, with and
    without cell segmentation).

    Args:
        ini_x (float): The initial x-coordinate of the view.
        ini_y (float): The initial y-coordinate of the view.
        ini_zoom (float): The initial zoom level of the view.
        rotation_orbit (float, optional): Rotating angle around orbit axis for
            point-cloud views.
        rotation_x (float, optional): Rotating angle around X axis for
            point-cloud views.
        token (str): The token traitlet.
        base_url (str or list): The base URL(s) for the widget. Can be a single string
            or a list of dicts with 'url' and 'label' keys for multiple datasets.
            Example: [{'url': 'http://...', 'label': 'Dataset1'}, ...]
            You can also pass a simple list of URL strings.
        dataset_names (list, optional): Short names for the datasets to display in
            the dropdown selector. Should match the length of base_urls.
            Example: ['Brain', 'Kidney'] for two datasets.
        rotate (float, optional): Degrees to rotate the 2D landscape visualization.
        AnnData (AnnData, optional): AnnData object to derive metadata from.
        dataset_name (str, optional): The name of the dataset to visualize. This
            will show up in the user interface bar.
        cell_name_prefix (bool, optional): If True, cell names in adata.obs.index
            are assumed to have a dataset prefix (e.g., "dataset-name_cell-name")
            that should be trimmed when mapping to LandscapeFiles. Default: False.

    The AnnData input automatically extracts cell attributes (e.g., ``leiden``
    clusters), the corresponding colors (or derives them when missing), and any
    available UMAP coordinates.
    """

    _esm = Path(__file__).parent / "../static" / "widget.js"
    _css = Path(__file__).parent / "../static" / "widget.css"
    component = traitlets.Unicode("Landscape").tag(sync=True)

    technology = traitlets.Unicode("Xenium").tag(sync=True)
    base_url = traitlets.Unicode("").tag(sync=True)
    # List of dataset configurations: [{'url': str, 'label': str}, ...]
    base_urls = traitlets.List(trait=traitlets.Dict(), default_value=[]).tag(sync=True)
    cell_name_prefix = traitlets.Bool(False).tag(sync=True)
    token = traitlets.Unicode("").tag(sync=True)
    creds = traitlets.Dict({}).tag(sync=True)
    max_tiles_to_view = traitlets.Int(50).tag(sync=True)
    ini_x = traitlets.Float().tag(sync=True)
    ini_y = traitlets.Float().tag(sync=True)
    ini_z = traitlets.Float().tag(sync=True)
    ini_zoom = traitlets.Float(0).tag(sync=True)
    rotation_orbit = traitlets.Float(0).tag(sync=True)
    rotation_x = traitlets.Float(0).tag(sync=True)
    rotate = traitlets.Float(0).tag(sync=True)
    square_tile_size = traitlets.Float(1.4).tag(sync=True)
    dataset_name = traitlets.Unicode("").tag(sync=True)
    region = traitlets.Dict({}).tag(sync=True)
    scale_bar_microns_per_pixel = traitlets.Float(default_value=None, allow_none=True).tag(
        sync=True
    )

    nbhd = traitlets.Instance(gpd.GeoDataFrame, allow_none=True)
    nbhd_geojson = traitlets.Dict({}).tag(sync=True)

    # Enable editing of neighborhoods when True
    nbhd_edit = traitlets.Bool(False).tag(sync=True)

    meta_nbhd = traitlets.Instance(pd.DataFrame, allow_none=True)

    meta_cluster = traitlets.Dict({}).tag(sync=True)
    selected_cells = traitlets.List(trait=traitlets.Unicode(), default_value=[]).tag(sync=True)
    landscape_state = traitlets.Unicode("spatial").tag(sync=True)

    update_trigger = traitlets.Dict().tag(sync=True)
    cell_clusters = traitlets.Dict({}).tag(sync=True)

    # AnnData obs columns (cell attributes)
    cell_attr = traitlets.List(
        trait=traitlets.Unicode(),
        default_value=["leiden"],
    ).tag(sync=True)

    segmentation = traitlets.Unicode("default").tag(sync=True)

    width = traitlets.Int(0).tag(sync=True)
    height = traitlets.Int(600).tag(sync=True)

    def __init__(self, **kwargs):
        adata = kwargs.pop("adata", None) or kwargs.pop("AnnData", None)
        pq_meta_cell = kwargs.pop("meta_cell_parquet", None)
        pq_meta_cluster = kwargs.pop("meta_cluster_parquet", None)
        pq_umap = kwargs.pop("umap_parquet", None)
        pq_meta_nbhd = kwargs.pop("meta_nbhd_parquet", None)

        meta_cell_df = kwargs.pop("meta_cell", None)
        meta_cluster = kwargs.pop("meta_cluster", None)
        umap_df = kwargs.pop("umap", None)
        nbhd_gdf = kwargs.pop("nbhd", None)
        meta_nbhd_df = kwargs.pop("meta_nbhd", None)
        nbhd_edit = kwargs.pop("nbhd_edit", False)
        meta_cluster_df = None
        # cell_attr = kwargs.pop("cell_attr", ["leiden"])
        cell_attr = list(kwargs.pop("cell_attr", ["leiden"]))

        # nbhd_edit can now be True even when nbhd data is provided,
        # allowing users to edit pre-loaded neighborhood polygons

        # Handle base_url which can be a string, list of strings, or list of dicts
        # Also accept base_urls directly for convenience
        raw_base_url = kwargs.pop("base_urls", None) or kwargs.get("base_url", "")
        # Optional dataset_names for short display names in dropdown
        dataset_names = kwargs.pop("dataset_names", None)
        base_urls_list = []

        if isinstance(raw_base_url, list):
            # Convert list to standardized format
            for i, item in enumerate(raw_base_url):
                if isinstance(item, dict):
                    # Already in dict format with 'url' and optionally 'label'
                    url = item.get("url", "")
                    label = item.get("label", f"Dataset {i + 1}")
                    short_label = item.get("short_label", f"DS-{i + 1}")
                    base_urls_list.append({"url": url, "label": label, "short_label": short_label})
                else:
                    # Just a string URL, create a label from the index
                    base_urls_list.append(
                        {
                            "url": str(item),
                            "label": f"Dataset {i + 1}",
                            "short_label": f"DS-{i + 1}",
                        }
                    )

            # Apply dataset_names if provided (overrides short_label)
            if dataset_names and isinstance(dataset_names, list):
                for i, name in enumerate(dataset_names):
                    if i < len(base_urls_list) and name:
                        base_urls_list[i]["short_label"] = str(name)
                        # Also use as label if label is default
                        if base_urls_list[i]["label"] == f"Dataset {i + 1}":
                            base_urls_list[i]["label"] = str(name)

            # Set the first URL as the primary base_url
            if base_urls_list:
                kwargs["base_url"] = base_urls_list[0]["url"]
            kwargs["base_urls"] = base_urls_list
        else:
            # Single string URL
            if raw_base_url:
                base_urls_list = [
                    {"url": raw_base_url, "label": "Dataset 1", "short_label": "DS-1"}
                ]
            kwargs["base_urls"] = base_urls_list

        base_path = (kwargs.get("base_url") or "") + "/"
        path_transformation_matrix = base_path + "micron_to_image_transform.csv"

        try:
            transformation_matrix = pd.read_csv(
                path_transformation_matrix, header=None, sep=" "
            ).values
        except (FileNotFoundError, urllib.error.HTTPError, urllib.error.URLError):
            transformation_matrix = np.eye(3)  # Fallback for testing
            warnings.warn(
                f"Transformation matrix not found at {path_transformation_matrix}. Using identity.",
                stacklevel=2,
            )

        self._transformation_matrix = transformation_matrix
        try:
            self._inv_transform = np.linalg.inv(transformation_matrix)
        except np.linalg.LinAlgError as e:
            self._inv_transform = np.eye(3)
            warnings.warn(
                f"Matrix inversion failed for transformation_matrix: {e}. "
                "Using identity matrix as fallback.",
                stacklevel=2,
            )

        def _df_to_bytes(df):
            import io

            import pyarrow as pa
            import pyarrow.parquet as pq

            df.columns = df.columns.map(str)
            buf = io.BytesIO()
            pq.write_table(pa.Table.from_pandas(df), buf, compression="zstd")
            return buf.getvalue()

        # Get cell_name_prefix setting
        cell_name_prefix_setting = kwargs.get("cell_name_prefix", False)

        if adata is not None:
            if "color" in adata.obs.columns and "color" not in cell_attr:
                cell_attr.append("color")

            # if cell_id is in the adata.obs, use it as index
            if "cell_id" in adata.obs.columns:
                adata.obs.set_index("cell_id", inplace=True)

            meta_cell_df = adata.obs[cell_attr].copy()

            if meta_cell_df.index.name is None:
                meta_cell_df.index.name = "cell_id"

            # If cell_name_prefix is True, trim the prefix from cell names
            # This allows mapping to LandscapeFiles which have short names
            if cell_name_prefix_setting:
                # Trim prefix before first underscore from index
                new_index = meta_cell_df.index.map(
                    lambda x: x.split("_", 1)[1] if "_" in str(x) else x
                )
                meta_cell_df.index = new_index

            pq_meta_cell = _df_to_bytes(meta_cell_df)

            if "leiden" in adata.obs.columns:
                cluster_counts = adata.obs["leiden"].value_counts().sort_index()
                colors = adata.uns.get("leiden_colors")

                if colors is None:
                    with suppress(Exception):
                        sc.pl.umap(adata, color="leiden", show=False)
                        plt.close()
                        colors = adata.uns.get("leiden_colors")

                # backup color definition
                if colors is None:
                    n = len(cluster_counts)
                    colors = [_hsv_to_hex(i / n) for i in range(n)]

                meta_cluster_df = pd.DataFrame(
                    {
                        "color": list(colors)[: len(cluster_counts)],
                        "count": cluster_counts.values,
                    },
                    index=cluster_counts.index,
                )

                pq_meta_cluster = _df_to_bytes(meta_cluster_df)

            if "X_umap" in adata.obsm:
                umap_df = pd.DataFrame(adata.obsm["X_umap"], index=adata.obs.index)

                # If cell_name_prefix is True, trim the prefix from cell names
                if cell_name_prefix_setting:
                    umap_df.index = umap_df.index.map(
                        lambda x: x.split("_", 1)[1] if "_" in str(x) else x
                    )

                umap_df = umap_df.reset_index().rename(
                    columns={"index": "cell_id", 0: "umap_0", 1: "umap_1"}
                )
                pq_umap = _df_to_bytes(umap_df)

        if isinstance(meta_cell_df, pd.DataFrame):
            pq_meta_cell = _df_to_bytes(meta_cell_df.reset_index())

        if isinstance(meta_cluster, pd.DataFrame):
            pq_meta_cluster = _df_to_bytes(meta_cluster.reset_index())
            kwargs.pop("meta_cluster")
            meta_cluster_df = meta_cluster

        if isinstance(umap_df, pd.DataFrame):
            pq_umap = _df_to_bytes(umap_df)

        if isinstance(meta_nbhd_df, pd.DataFrame):
            pq_meta_nbhd = _df_to_bytes(meta_nbhd_df.reset_index())

        parquet_traits = {}
        if pq_meta_cell is not None:
            parquet_traits["meta_cell_parquet"] = traitlets.Bytes(pq_meta_cell).tag(sync=True)
        if pq_meta_cluster is not None:
            parquet_traits["meta_cluster_parquet"] = traitlets.Bytes(pq_meta_cluster).tag(sync=True)
        if pq_umap is not None:
            parquet_traits["umap_parquet"] = traitlets.Bytes(pq_umap).tag(sync=True)
        if pq_meta_nbhd is not None:
            parquet_traits["meta_nbhd_parquet"] = traitlets.Bytes(pq_meta_nbhd).tag(sync=True)

        if parquet_traits:
            self.add_traits(**parquet_traits)

        super().__init__(**kwargs)

        self.cell_attr = cell_attr

        # store DataFrames locally without syncing to the frontend
        self.meta_cell = meta_cell_df
        self.meta_nbhd = meta_nbhd_df
        self.nbhd = nbhd_gdf
        self.nbhd_edit = nbhd_edit
        self.umap = umap_df
        if meta_cluster_df is not None:
            self.meta_cluster_df = meta_cluster_df

        # compute geojson for initial nbhd if provided
        if self.nbhd is not None:
            if "geometry_pixel" not in self.nbhd.columns:
                a, b, tx = transformation_matrix[0]
                c, d, ty = transformation_matrix[1]
                coeffs = [a, b, c, d, tx, ty]

                self.nbhd["geometry_pixel"] = self.nbhd.geometry.apply(
                    lambda geom: affine_transform(geom, coeffs)
                )

            gdf_viz = deepcopy(self.nbhd)
            gdf_viz["geometry"] = gdf_viz["geometry_pixel"]
            gdf_viz.drop(columns=["geometry_pixel"], inplace=True)

            self.nbhd_geojson = json.loads(gdf_viz.to_json())
        elif self.nbhd_edit:
            self.nbhd_geojson = {"type": "FeatureCollection", "features": []}

    def trigger_update(self, new_value):
        """Update the update_trigger traitlet with a new value."""
        self.update_trigger = new_value

    def update_cell_clusters(self, new_clusters):
        """Update cell clusters with new data."""
        self.cell_clusters = new_clusters

    def highlight_cells(self, cell_ids):
        """Highlight specific cells by their identifiers."""

        self.selected_cells = list(cell_ids)

    @traitlets.observe("nbhd_geojson")
    def _on_nbhd_geojson_change(self, change):
        """Update ``nbhd`` GeoDataFrame when the GeoJSON changes."""
        if not getattr(self, "nbhd_edit", False):
            return

        new = change["new"]
        if not new:
            self.nbhd = gpd.GeoDataFrame(columns=["name", "geometry"], geometry="geometry")
            return

        gdf = gpd.GeoDataFrame.from_features(new.get("features", []))

        try:
            a, b, tx = self._inv_transform[0]
            c, d, ty = self._inv_transform[1]
            coeffs = [a, b, c, d, tx, ty]
            gdf["geometry"] = gdf.geometry.apply(lambda geom: affine_transform(geom, coeffs))
        except Exception:
            pass

        self.nbhd = gdf

    def close(self):  # pragma: no cover - cleanup depends on JS
        """Close the widget and notify the frontend to release resources."""
        with suppress(Exception):
            self.send({"event": "finalize"})
        super().close()

close()

Close the widget and notify the frontend to release resources.

Source code in src/celldega/viz/widget.py
388
389
390
391
392
def close(self):  # pragma: no cover - cleanup depends on JS
    """Close the widget and notify the frontend to release resources."""
    with suppress(Exception):
        self.send({"event": "finalize"})
    super().close()

highlight_cells(cell_ids)

Highlight specific cells by their identifiers.

Source code in src/celldega/viz/widget.py
360
361
362
363
def highlight_cells(self, cell_ids):
    """Highlight specific cells by their identifiers."""

    self.selected_cells = list(cell_ids)

trigger_update(new_value)

Update the update_trigger traitlet with a new value.

Source code in src/celldega/viz/widget.py
352
353
354
def trigger_update(self, new_value):
    """Update the update_trigger traitlet with a new value."""
    self.update_trigger = new_value

update_cell_clusters(new_clusters)

Update cell clusters with new data.

Source code in src/celldega/viz/widget.py
356
357
358
def update_cell_clusters(self, new_clusters):
    """Update cell clusters with new data."""
    self.cell_clusters = new_clusters

Yearbook

Bases: AnyWidget

A widget for visualizing cell portraits in a yearbook-style grid layout.

This widget creates a grid of cell "portraits" - zoomed-in views centered on selected cells. All portraits share synchronized zoom state but display different spatial regions. The control panel works similarly to Landscape, showing gene and cell bars based on visible content.

Parameters:

Name Type Description Default
base_url str

The base URL for the dataset.

required
cells list

List of cell identifiers to display as portraits. If not provided and no query is given, random cells will be selected.

required
query dict

Query for finding cells from LandscapeFiles. Supports the following formats:

  • Cluster only: {"cluster": {"attr": "leiden", "value": "8"}} Returns random cells from the specified cluster.
  • Gene only: {"gene": "BRCA1"} Returns cells ranked by gene expression (highest first).
  • Cluster + Gene: {"cluster": {"attr": "leiden", "value": "8"}, "gene": "BRCA1"} Returns cells from the cluster ranked by gene expression.
  • Max cells: {"max_cells": 100} Limits the number of cells returned (default: num_rows * num_cols * 10).

The query uses LandscapeFiles data (or adata if provided) to find cells. This is an alternative to providing an explicit cells list.

required
num_rows int

Number of rows in the portrait grid. Alias: rows.

required
num_cols int

Number of columns in the portrait grid. Alias: cols.

required
portrait_size_um float

Size of each portrait in micrometers.

required
portrait_gap int

Gap between portraits in pixels. Default is 4.

required
pixel_width float

Pixel width for scale bar calculation. If provided, a scale bar will be displayed.

required
token str

Authentication token for data access.

required
dataset_name str

Name to display in the UI.

required
width int

Widget width in pixels. 0 means 100%.

required
height int

Widget height in pixels.

required
segmentation str

Segmentation version to use. Default is "default".

required
adata AnnData

AnnData object for cell metadata.

required
cell_attr list

List of cell attributes to extract from adata.

required

Example::

# Using explicit cell list
yb = Yearbook(
    base_url="https://path-to-dataset",
    cells=["cell_1", "cell_2", "cell_3", "cell_4"],
    rows=2,
    cols=2,
    portrait_size_um=100,
)

# Using query to find cells from a cluster
yb = Yearbook(
    base_url="https://path-to-dataset",
    query={"cluster": {"attr": "leiden", "value": "5"}},
    rows=2,
    cols=2,
    portrait_size_um=100,
)

# Using query for cells ranked by gene expression
yb = Yearbook(
    base_url="https://path-to-dataset",
    query={"gene": "BRCA1", "max_cells": 50},
    rows=2,
    cols=2,
    portrait_size_um=100,
)
Source code in src/celldega/viz/widget.py
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
class Yearbook(anywidget.AnyWidget):
    """
    A widget for visualizing cell portraits in a yearbook-style grid layout.

    This widget creates a grid of cell "portraits" - zoomed-in views centered on
    selected cells. All portraits share synchronized zoom state but display different
    spatial regions. The control panel works similarly to Landscape, showing gene
    and cell bars based on visible content.

    Args:
        base_url (str): The base URL for the dataset.
        cells (list, optional): List of cell identifiers to display as portraits.
            If not provided and no query is given, random cells will be selected.
        query (dict, optional): Query for finding cells from LandscapeFiles.
            Supports the following formats:

            - Cluster only: ``{"cluster": {"attr": "leiden", "value": "8"}}``
              Returns random cells from the specified cluster.
            - Gene only: ``{"gene": "BRCA1"}``
              Returns cells ranked by gene expression (highest first).
            - Cluster + Gene: ``{"cluster": {"attr": "leiden", "value": "8"}, "gene": "BRCA1"}``
              Returns cells from the cluster ranked by gene expression.
            - Max cells: ``{"max_cells": 100}``
              Limits the number of cells returned (default: num_rows * num_cols * 10).

            The query uses LandscapeFiles data (or adata if provided) to find cells.
            This is an alternative to providing an explicit ``cells`` list.
        num_rows (int): Number of rows in the portrait grid. Alias: ``rows``.
        num_cols (int): Number of columns in the portrait grid. Alias: ``cols``.
        portrait_size_um (float): Size of each portrait in micrometers.
        portrait_gap (int): Gap between portraits in pixels. Default is 4.
        pixel_width (float, optional): Pixel width for scale bar calculation.
            If provided, a scale bar will be displayed.
        token (str, optional): Authentication token for data access.
        dataset_name (str, optional): Name to display in the UI.
        width (int): Widget width in pixels. 0 means 100%.
        height (int): Widget height in pixels.
        segmentation (str): Segmentation version to use. Default is "default".
        adata (AnnData, optional): AnnData object for cell metadata.
        cell_attr (list): List of cell attributes to extract from adata.

    Example::

        # Using explicit cell list
        yb = Yearbook(
            base_url="https://path-to-dataset",
            cells=["cell_1", "cell_2", "cell_3", "cell_4"],
            rows=2,
            cols=2,
            portrait_size_um=100,
        )

        # Using query to find cells from a cluster
        yb = Yearbook(
            base_url="https://path-to-dataset",
            query={"cluster": {"attr": "leiden", "value": "5"}},
            rows=2,
            cols=2,
            portrait_size_um=100,
        )

        # Using query for cells ranked by gene expression
        yb = Yearbook(
            base_url="https://path-to-dataset",
            query={"gene": "BRCA1", "max_cells": 50},
            rows=2,
            cols=2,
            portrait_size_um=100,
        )
    """

    _esm = Path(__file__).parent / "../static" / "widget.js"
    _css = Path(__file__).parent / "../static" / "widget.css"
    component = traitlets.Unicode("Yearbook").tag(sync=True)

    base_url = traitlets.Unicode("").tag(sync=True)
    token = traitlets.Unicode("").tag(sync=True)
    creds = traitlets.Dict({}).tag(sync=True)

    # Cell list to display as portraits
    cells = traitlets.List(trait=traitlets.Unicode(), default_value=[]).tag(sync=True)

    # Grid configuration
    num_rows = traitlets.Int(2).tag(sync=True)
    num_cols = traitlets.Int(3).tag(sync=True)

    # Portrait size in micrometers
    portrait_size_um = traitlets.Float(50.0).tag(sync=True)

    # For scale bar calculation
    pixel_width = traitlets.Float(default_value=None, allow_none=True).tag(sync=True)
    scale_bar_microns_per_pixel = traitlets.Float(default_value=None, allow_none=True).tag(
        sync=True
    )

    # Pagination
    current_page = traitlets.Int(0).tag(sync=True)

    # Display options
    dataset_name = traitlets.Unicode("").tag(sync=True)
    width = traitlets.Int(0).tag(sync=True)
    height = traitlets.Int(800).tag(sync=True)

    # Gap between portraits in pixels
    portrait_gap = traitlets.Int(4).tag(sync=True)

    # Segmentation version
    segmentation = traitlets.Unicode("default").tag(sync=True)

    # Zoom state (synced across all portraits)
    zoom_level = traitlets.Float(0).tag(sync=True)

    # Cell metadata (similar to Landscape)
    meta_cluster = traitlets.Dict({}).tag(sync=True)
    cell_attr = traitlets.List(
        trait=traitlets.Unicode(),
        default_value=["leiden"],
    ).tag(sync=True)

    # Query for finding cells from LandscapeFiles
    # Supports: {"cluster": {"attr": "leiden", "value": "8"}} - cells from cluster
    #           {"gene": "BRCA1"} - cells ranked by gene expression
    #           {"cluster": {"attr": "leiden", "value": "8"}, "gene": "BRCA1"} - cluster cells ranked by gene
    #           {"max_cells": 100} - limit number of cells returned (default: num_rows * num_cols * 10)
    query = traitlets.Dict({}).tag(sync=True)

    def __init__(self, **kwargs):
        # Support 'rows' and 'cols' as aliases for 'num_rows' and 'num_cols'
        if "rows" in kwargs and "num_rows" not in kwargs:
            kwargs["num_rows"] = kwargs.pop("rows")
        elif "rows" in kwargs:
            kwargs.pop("rows")  # Remove duplicate

        if "cols" in kwargs and "num_cols" not in kwargs:
            kwargs["num_cols"] = kwargs.pop("cols")
        elif "cols" in kwargs:
            kwargs.pop("cols")  # Remove duplicate

        adata = kwargs.pop("adata", None) or kwargs.pop("AnnData", None)
        pq_meta_cell = kwargs.pop("meta_cell_parquet", None)
        pq_meta_cluster = kwargs.pop("meta_cluster_parquet", None)

        meta_cell_df = kwargs.pop("meta_cell", None)
        meta_cluster = kwargs.pop("meta_cluster", None)
        meta_cluster_df = None
        cell_attr = kwargs.pop("cell_attr", ["leiden"])

        def _df_to_bytes(df):
            import io

            import pyarrow as pa
            import pyarrow.parquet as pq

            df.columns = df.columns.map(str)
            buf = io.BytesIO()
            pq.write_table(pa.Table.from_pandas(df), buf, compression="zstd")
            return buf.getvalue()

        if adata is not None:
            # if cell_id is in the adata.obs, use it as index
            if "cell_id" in adata.obs.columns:
                adata.obs.set_index("cell_id", inplace=True)

            meta_cell_df = adata.obs[cell_attr].copy()

            if meta_cell_df.index.name is None:
                meta_cell_df.index.name = "cell_id"

            pq_meta_cell = _df_to_bytes(meta_cell_df)

            if "leiden" in adata.obs.columns:
                cluster_counts = adata.obs["leiden"].value_counts().sort_index()
                colors = adata.uns.get("leiden_colors")

                if colors is None:
                    with suppress(Exception):
                        sc.pl.umap(adata, color="leiden", show=False)
                        plt.close()
                        colors = adata.uns.get("leiden_colors")

                # backup color definition
                if colors is None:
                    n = len(cluster_counts)
                    colors = [_hsv_to_hex(i / n) for i in range(n)]

                meta_cluster_df = pd.DataFrame(
                    {
                        "color": list(colors)[: len(cluster_counts)],
                        "count": cluster_counts.values,
                    },
                    index=cluster_counts.index,
                )

                pq_meta_cluster = _df_to_bytes(meta_cluster_df)

        if isinstance(meta_cell_df, pd.DataFrame):
            pq_meta_cell = _df_to_bytes(meta_cell_df.reset_index())

        if isinstance(meta_cluster, pd.DataFrame):
            pq_meta_cluster = _df_to_bytes(meta_cluster.reset_index())
            kwargs.pop("meta_cluster", None)
            meta_cluster_df = meta_cluster

        parquet_traits = {}
        if pq_meta_cell is not None:
            parquet_traits["meta_cell_parquet"] = traitlets.Bytes(pq_meta_cell).tag(sync=True)
        if pq_meta_cluster is not None:
            parquet_traits["meta_cluster_parquet"] = traitlets.Bytes(pq_meta_cluster).tag(sync=True)

        if parquet_traits:
            self.add_traits(**parquet_traits)

        super().__init__(**kwargs)

        # store DataFrames locally without syncing to the frontend
        self.meta_cell = meta_cell_df
        if meta_cluster_df is not None:
            self.meta_cluster_df = meta_cluster_df

    @property
    def total_pages(self):
        """Calculate total number of pages based on cells and grid size."""
        portraits_per_page = self.num_rows * self.num_cols
        return max(1, -(-len(self.cells) // portraits_per_page))  # Ceiling division

    def next_page(self):
        """Navigate to next page."""
        if self.current_page < self.total_pages - 1:
            self.current_page += 1

    def prev_page(self):
        """Navigate to previous page."""
        if self.current_page > 0:
            self.current_page -= 1

    def go_to_page(self, page):
        """Navigate to a specific page."""
        self.current_page = max(0, min(page, self.total_pages - 1))

    def close(self):  # pragma: no cover - cleanup depends on JS
        """Close the widget and notify the frontend to release resources."""
        with suppress(Exception):
            self.send({"event": "finalize"})
        super().close()

total_pages property

Calculate total number of pages based on cells and grid size.

close()

Close the widget and notify the frontend to release resources.

Source code in src/celldega/viz/widget.py
714
715
716
717
718
def close(self):  # pragma: no cover - cleanup depends on JS
    """Close the widget and notify the frontend to release resources."""
    with suppress(Exception):
        self.send({"event": "finalize"})
    super().close()

go_to_page(page)

Navigate to a specific page.

Source code in src/celldega/viz/widget.py
710
711
712
def go_to_page(self, page):
    """Navigate to a specific page."""
    self.current_page = max(0, min(page, self.total_pages - 1))

next_page()

Navigate to next page.

Source code in src/celldega/viz/widget.py
700
701
702
703
def next_page(self):
    """Navigate to next page."""
    if self.current_page < self.total_pages - 1:
        self.current_page += 1

prev_page()

Navigate to previous page.

Source code in src/celldega/viz/widget.py
705
706
707
708
def prev_page(self):
    """Navigate to previous page."""
    if self.current_page > 0:
        self.current_page -= 1

clustergram_enrich(cgm, *, row_enrich=True, col_enrich=False)

Display a Clustergram widget and an Enrich widget side by side.

Parameters:

Name Type Description Default
cgm Clustergram

A Clustergram widget.

required
row_enrich bool

If True (default), run enrichment analysis when row dendrogram clusters are selected.

True
col_enrich bool

If True, run enrichment analysis when column dendrogram clusters are selected.

False

Returns:

Name Type Description
HBox HBox

Visualization display containing both widgets.

Source code in src/celldega/viz/__init__.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def clustergram_enrich(
    cgm: Clustergram,
    *,
    row_enrich: bool = True,
    col_enrich: bool = False,
) -> HBox:
    """
    Display a `Clustergram` widget and an `Enrich` widget side by side.

    Args:
        cgm (Clustergram): A `Clustergram` widget.
        row_enrich (bool): If True (default), run enrichment analysis when
            row dendrogram clusters are selected.
        col_enrich (bool): If True, run enrichment analysis when column
            dendrogram clusters are selected.

    Returns:
        HBox: Visualization display containing both widgets.
    """
    cgm.layout = Layout(width="600px")

    enrich = Enrich(gene_list=[], width=250)

    _link_clustergram_to_enrich(
        cgm,
        enrich,
        row_enrich=row_enrich,
        col_enrich=col_enrich,
    )

    return HBox([cgm, enrich], layout=Layout(width="1000px"))

get_local_server()

Start a local HTTP server with CORS support and return the port number.

Returns:

Name Type Description
int int

The port number on which the server is running.

Source code in src/celldega/viz/local_server.py
31
32
33
34
35
36
37
38
39
40
41
42
43
def get_local_server() -> int:
    """
    Start a local HTTP server with CORS support and return the port number.

    Returns:
        int: The port number on which the server is running.
    """
    server = HTTPServer(("", 0), CORSHTTPRequestHandler)

    service = thr.Thread(target=server.serve_forever)
    service.start()

    return server.server_address[1]

landscape_clustergram(landscape, mat, width='600px', height='700px', *, enrich=False, row_enrich=True, col_enrich=False, enrich_kwargs=None)

Display a Landscape widget and a Clustergram widget side by side.

Parameters:

Name Type Description Default
landscape Landscape

A Landscape widget.

required
mat Clustergram

A Clustergram widget.

required
width str

The width of the widgets.

'600px'
height str

The height of the widgets.

'700px'
enrich bool | Enrich

If True, create an Enrich widget; if an Enrich instance is provided, use it directly. If False, no enrichment widget is shown.

False
row_enrich bool

If True (default), run enrichment analysis when row dendrogram clusters are selected.

True
col_enrich bool

If True, run enrichment analysis when column dendrogram clusters are selected.

False
enrich_kwargs dict | None

Optional kwargs passed to Enrich when enrich=True.

None

Returns:

Name Type Description
HBox HBox

Visualization display containing the widgets.

Source code in src/celldega/viz/__init__.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def landscape_clustergram(
    landscape: Landscape,
    mat: Clustergram,
    width: str = "600px",
    height: str = "700px",
    *,
    enrich: bool | Enrich = False,
    row_enrich: bool = True,
    col_enrich: bool = False,
    enrich_kwargs: dict | None = None,
) -> HBox:
    """
    Display a `Landscape` widget and a `Clustergram` widget side by side.

    Args:
        landscape (Landscape): A `Landscape` widget.
        mat (Clustergram): A `Clustergram` widget.
        width (str): The width of the widgets.
        height (str): The height of the widgets.
        enrich (bool | Enrich): If True, create an `Enrich` widget; if an
            `Enrich` instance is provided, use it directly. If False, no
            enrichment widget is shown.
        row_enrich (bool): If True (default), run enrichment analysis when
            row dendrogram clusters are selected.
        col_enrich (bool): If True, run enrichment analysis when column
            dendrogram clusters are selected.
        enrich_kwargs (dict | None): Optional kwargs passed to `Enrich` when
            `enrich=True`.

    Returns:
        HBox: Visualization display containing the widgets.
    """
    # Link clustergram click_info to landscape update_trigger
    jslink((mat, "click_info"), (landscape, "update_trigger"))

    # Layouts
    mat.layout = Layout(width=width)
    landscape.layout = Layout(width=width, height=height)

    enrich_widget: Enrich | None = None
    if isinstance(enrich, Enrich):
        enrich_widget = enrich
    elif enrich:
        config = dict(enrich_kwargs or {})
        config.setdefault("gene_list", [])
        config.setdefault("width", 250)
        enrich_widget = Enrich(**config)

    if enrich_widget is not None:

        def _forward_gene_to_landscape(gene: str) -> None:
            if gene:
                landscape.trigger_update({"type": "row_label", "value": {"name": gene}})

        _link_clustergram_to_enrich(
            mat,
            enrich_widget,
            row_enrich=row_enrich,
            col_enrich=col_enrich,
            gene_focus_callback=_forward_gene_to_landscape,
        )

    children = [landscape, mat]
    if enrich_widget is not None:
        children.append(enrich_widget)

    return HBox(children)