Skip to content

Viz Module API Reference

Widget Classes

The Clustergram widget accepts a parquet_data argument for efficient initialization. Use Matrix.export_viz_parquet to generate this data from a clustered matrix. Passing a JSON network object is deprecated; pass matrix or parquet_data instead.

Module for visualization

Clustergram

Bases: AnyWidget

A widget for interactive visualization of a hierarchically clustered matrix.

Automatically replaces older widgets with the same name to prevent notebook bloat.

Parameters:

Name Type Description Default
value int

The value traitlet.

required
component str

The component traitlet.

required
network dict

Deprecated. Use matrix or parquet_data.

required
click_info dict

The click_info traitlet.

required

Returns:

Name Type Description
Clustergram

A widget for visualizing a hierarchically clustered matrix.

Source code in src/celldega/viz/widget.py
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
class Clustergram(anywidget.AnyWidget):
    """
    A widget for interactive visualization of a hierarchically clustered matrix.

    Automatically replaces older widgets with the same name to prevent notebook bloat.

    Args:
        value (int): The value traitlet.
        component (str): The component traitlet.
        network (dict): **Deprecated.** Use ``matrix`` or ``parquet_data``.
        click_info (dict): The click_info traitlet.

    Returns:
        Clustergram: A widget for visualizing a hierarchically clustered matrix.
    """

    _esm = Path(__file__).parent / "../static" / "widget.js"
    _css = Path(__file__).parent / "../static" / "widget.css"

    value = traitlets.Int(0).tag(sync=True)
    component = traitlets.Unicode("Matrix").tag(sync=True)
    network = traitlets.Dict({}).tag(sync=True)
    network_meta = traitlets.Dict({}).tag(sync=True)
    width = traitlets.Int(600).tag(sync=True)
    height = traitlets.Int(600).tag(sync=True)
    click_info = traitlets.Dict({}).tag(sync=True)
    selected_genes = traitlets.List(default_value=[]).tag(sync=True)
    top_n_genes = traitlets.Int(50).tag(sync=True)

    def __init__(self, **kwargs):
        pq_data = kwargs.pop("parquet_data", None)

        if "network" in kwargs:
            warnings.warn(
                "`network` argument is deprecated. Use `matrix` or `parquet_data` instead.",
                DeprecationWarning,
                stacklevel=2,
            )

        # Allow fallback via a 'matrix' kwarg
        if pq_data is None:
            matrix = kwargs.pop("matrix", None)
            if matrix is not None:
                pq_data = matrix.export_viz_parquet()
            elif "network" not in kwargs:
                raise ValueError(
                    "You must pass either `network`, `parquet_data`, or `matrix` (for fallback). If both `network` and `matrix` are provided, `matrix` will be prioritized."
                )

        # Infer name from pq_data or network
        name = kwargs.get("network", {}).get("name", None)
        if pq_data is not None:
            meta = pq_data.get("meta", {})
            name = meta.get("name", name)
            kwargs.setdefault("network_meta", meta)

            parquet_traits = {
                "mat_parquet": traitlets.Bytes(pq_data.get("mat", b"")).tag(sync=True),
                "row_nodes_parquet": traitlets.Bytes(pq_data.get("row_nodes", b"")).tag(sync=True),
                "col_nodes_parquet": traitlets.Bytes(pq_data.get("col_nodes", b"")).tag(sync=True),
                "row_linkage_parquet": traitlets.Bytes(pq_data.get("row_linkage", b"")).tag(
                    sync=True
                ),
                "col_linkage_parquet": traitlets.Bytes(pq_data.get("col_linkage", b"")).tag(
                    sync=True
                ),
            }
            self.add_traits(**parquet_traits)

        old_widget = _clustergram_registry.get(name)
        if old_widget:
            with suppress(Exception):
                old_widget.close()

        kwargs["name"] = name
        super().__init__(**kwargs)
        _clustergram_registry[name] = self

    def close(self):  # pragma: no cover - cleanup depends on JS
        """Close the widget and notify the frontend to release resources."""
        with suppress(Exception):
            self.send({"event": "finalize"})
        super().close()

close()

Close the widget and notify the frontend to release resources.

Source code in src/celldega/viz/widget.py
431
432
433
434
435
def close(self):  # pragma: no cover - cleanup depends on JS
    """Close the widget and notify the frontend to release resources."""
    with suppress(Exception):
        self.send({"event": "finalize"})
    super().close()

Enrich

Bases: AnyWidget

A widget for interactive enrichment analysis using the Enrichr API. This widget allows users to select a gene list, choose an enrichment library, and specify the number of terms to display. Automatically replaces older widgets with the same name to prevent notebook bloat. Args: value (int): The value traitlet. component (str): The component traitlet. gene_list (list): The list of genes to analyze. available_libs (list): The list of available enrichment libraries. inst_lib (str): The selected enrichment library. num_terms (int): The number of terms to display.

Source code in src/celldega/viz/widget.py
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
class Enrich(anywidget.AnyWidget):
    """
    A widget for interactive enrichment analysis using the Enrichr API.
    This widget allows users to select a gene list, choose an enrichment library,
    and specify the number of terms to display.
    Automatically replaces older widgets with the same name to prevent notebook bloat.
    Args:
        value (int): The value traitlet.
        component (str): The component traitlet.
        gene_list (list): The list of genes to analyze.
        available_libs (list): The list of available enrichment libraries.
        inst_lib (str): The selected enrichment library.
        num_terms (int): The number of terms to display.
    """

    _esm = Path(__file__).parent / "../static" / "widget.js"
    _css = Path(__file__).parent / "../static" / "widget.css"

    value = traitlets.Int(0).tag(sync=True)
    width = traitlets.Int(650).tag(sync=True)
    height = traitlets.Int(650).tag(sync=True)

    component = traitlets.Unicode("Enrich").tag(sync=True)

    # gene list
    gene_list = traitlets.List(default_value=[]).tag(sync=True)

    # optional background gene list
    background_list = traitlets.List(allow_none=True, default_value=None).tag(sync=True)

    # available enrichment libraries
    available_libs = traitlets.List(
        [
            "CellMarker_2024",
            "ARCHS4_Tissues",
            "GO_Biological_Process_2025",
            "GO_Cellular_Component_2025",
            "GO_Molecular_Function_2025",
            "GTEx_Tissue_Expression_Up",
            "KEGG_2019_Human",
            "ChEA_2022",
            "MGI_Mammalian_Phenotype_Level_4_2024",
            "Disease_Perturbations_from_GEO_up",
            "Ligand_Perturbations_from_GEO_up",
            "LINCS_L1000_Chem_Pert_down",
            "Ligand_Perturbations_from_GEO_down",
        ]
    ).tag(sync=True)

    # enrichment library
    inst_lib = traitlets.Unicode("CellMarker_2024").tag(sync=True)

    # number of terms
    num_terms = traitlets.Int(50).tag(sync=True)

    def __init__(self, **kwargs):
        name = kwargs.pop("name", "default")
        old_widget = _enrich_registry.get(name)
        if old_widget:
            with suppress(Exception):
                old_widget.close()

        kwargs["name"] = name
        super().__init__(**kwargs)
        _enrich_registry[name] = self

    def close(self):  # pragma: no cover - cleanup depends on JS
        with suppress(Exception):
            self.send({"event": "finalize"})
        super().close()

Landscape

Bases: AnyWidget

A widget for interactive visualization of spatial omics data. This widget currently supports iST (Xenium and MERSCOPE) and sST (Visium HD data)

Parameters:

Name Type Description Default
ini_x float

The initial x-coordinate of the view.

required
ini_y float

The initial y-coordinate of the view.

required
ini_zoom float

The initial zoom level of the view.

required
token str

The token traitlet.

required
base_url str

The base URL for the widget.

required
AnnData AnnData

AnnData object to derive metadata from.

required
dataset_name str

The name of the dataset to visualize. This will show up in the user interface bar.

required

The AnnData input automatically extracts cell attributes (e.g., leiden clusters), the corresponding colors (or derives them when missing), and any available UMAP coordinates.

Attributes:

Name Type Description
component str

The name of the component.

technology str

The technology used.

base_url str

The base URL for the widget.

token str

The token traitlet.

ini_x float

The initial x-coordinate of the view.

ini_y float

The initial y-coordinate of the view.

ini_z float

The initial z-coordinate of the view.

ini_zoom float

The initial zoom level of the view.

dataset_name str

The name of the dataset to visualize.

update_trigger dict

The dictionary to trigger updates.

cell_clusters dict

The dictionary containing cell cluster information.

Returns:

Name Type Description
Landscape

A widget for visualizing a 'landscape' view of spatial omics data.

Source code in src/celldega/viz/widget.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class Landscape(anywidget.AnyWidget):
    """
    A widget for interactive visualization of spatial omics data. This widget
    currently supports iST (Xenium and MERSCOPE) and sST (Visium HD data)

    Args:
        ini_x (float): The initial x-coordinate of the view.
        ini_y (float): The initial y-coordinate of the view.
        ini_zoom (float): The initial zoom level of the view.
        token (str): The token traitlet.
        base_url (str): The base URL for the widget.
        AnnData (AnnData, optional): AnnData object to derive metadata from.
        dataset_name (str, optional): The name of the dataset to visualize. This will show up in the user interface bar.

    The AnnData input automatically extracts cell attributes (e.g., ``leiden``
    clusters), the corresponding colors (or derives them when missing), and any
    available UMAP coordinates.

    Attributes:
        component (str): The name of the component.
        technology (str): The technology used.
        base_url (str): The base URL for the widget.
        token (str): The token traitlet.
        ini_x (float): The initial x-coordinate of the view.
        ini_y (float): The initial y-coordinate of the view.
        ini_z (float): The initial z-coordinate of the view.
        ini_zoom (float): The initial zoom level of the view.
        dataset_name (str): The name of the dataset to visualize.
        update_trigger (dict): The dictionary to trigger updates.
        cell_clusters (dict): The dictionary containing cell cluster information.

    Returns:
        Landscape: A widget for visualizing a 'landscape' view of spatial omics data.
    """

    _esm = Path(__file__).parent / "../static" / "widget.js"
    _css = Path(__file__).parent / "../static" / "widget.css"
    component = traitlets.Unicode("Landscape").tag(sync=True)

    technology = traitlets.Unicode("sst").tag(sync=True)
    base_url = traitlets.Unicode("").tag(sync=True)
    token = traitlets.Unicode("").tag(sync=True)
    creds = traitlets.Dict({}).tag(sync=True)
    ini_x = traitlets.Float().tag(sync=True)
    ini_y = traitlets.Float().tag(sync=True)
    ini_z = traitlets.Float().tag(sync=True)
    ini_zoom = traitlets.Float(0).tag(sync=True)
    square_tile_size = traitlets.Float(1.4).tag(sync=True)
    dataset_name = traitlets.Unicode("").tag(sync=True)
    region = traitlets.Dict({}).tag(sync=True)

    nbhd = traitlets.Instance(gpd.GeoDataFrame, allow_none=True)
    nbhd_geojson = traitlets.Dict({}).tag(sync=True)

    meta_nbhd = traitlets.Instance(pd.DataFrame, allow_none=True)

    meta_cluster = traitlets.Dict({}).tag(sync=True)
    landscape_state = traitlets.Unicode("spatial").tag(sync=True)

    update_trigger = traitlets.Dict().tag(sync=True)
    cell_clusters = traitlets.Dict({}).tag(sync=True)

    # make a traitlet for cell_attr a list that will have the AnnData obs columns
    cell_attr = traitlets.List(trait=traitlets.Unicode(), default_value=["leiden"]).tag(sync=True)

    segmentation = traitlets.Unicode("default").tag(sync=True)

    width = traitlets.Int(0).tag(sync=True)
    height = traitlets.Int(800).tag(sync=True)

    def __init__(self, **kwargs):
        adata = kwargs.pop("adata", None) or kwargs.pop("AnnData", None)
        pq_meta_cell = kwargs.pop("meta_cell_parquet", None)
        pq_meta_cluster = kwargs.pop("meta_cluster_parquet", None)
        pq_umap = kwargs.pop("umap_parquet", None)
        pq_meta_nbhd = kwargs.pop("meta_nbhd_parquet", None)

        meta_cell_df = kwargs.pop("meta_cell", None)
        meta_cluster = kwargs.pop("meta_cluster", None)
        umap_df = kwargs.pop("umap", None)
        nbhd_gdf = kwargs.pop("nbhd", None)
        meta_nbhd_df = kwargs.pop("meta_nbhd", None)
        meta_cluster_df = None
        cell_attr = kwargs.pop("cell_attr", ["leiden"])

        base_path = (kwargs.get("base_url") or "") + "/"

        path_transformation_matrix = base_path + "micron_to_image_transform.csv"

        try:
            transformation_matrix = pd.read_csv(
                path_transformation_matrix, header=None, sep=" "
            ).values
        except (FileNotFoundError, urllib.error.HTTPError, urllib.error.URLError):
            transformation_matrix = np.eye(3)  # Fallback for testing
            warnings.warn(
                f"Transformation matrix not found at {path_transformation_matrix}. Using identity.",
                stacklevel=2,
            )

        def _df_to_bytes(df):
            import io

            import pyarrow as pa
            import pyarrow.parquet as pq

            df.columns = df.columns.map(str)
            buf = io.BytesIO()
            pq.write_table(pa.Table.from_pandas(df), buf, compression="zstd")
            return buf.getvalue()

        if adata is not None:
            # if cell_id is in the adata.obs, use it as index
            if "cell_id" in adata.obs.columns:
                adata.obs.set_index("cell_id", inplace=True)

            meta_cell_df = adata.obs[cell_attr].copy()

            if meta_cell_df.index.name is None:
                meta_cell_df.index.name = "cell_id"

            pq_meta_cell = _df_to_bytes(meta_cell_df)

            if "leiden" in adata.obs.columns:
                cluster_counts = adata.obs["leiden"].value_counts().sort_index()
                colors = adata.uns.get("leiden_colors")

                if colors is None:
                    with suppress(Exception):
                        sc.pl.umap(adata, color="leiden", show=False)
                        plt.close()
                        colors = adata.uns.get("leiden_colors")

                # backup color definition
                if colors is None:
                    n = len(cluster_counts)
                    colors = [_hsv_to_hex(i / n) for i in range(n)]

                meta_cluster_df = pd.DataFrame(
                    {
                        "color": list(colors)[: len(cluster_counts)],
                        "count": cluster_counts.values,
                    },
                    index=cluster_counts.index,
                )

                pq_meta_cluster = _df_to_bytes(meta_cluster_df)

            if "X_umap" in adata.obsm:
                umap_df = (
                    pd.DataFrame(adata.obsm["X_umap"], index=adata.obs.index)
                    .reset_index()
                    .rename(columns={"index": "cell_id", 0: "umap_0", 1: "umap_1"})
                )
                pq_umap = _df_to_bytes(umap_df)

        if isinstance(meta_cell_df, pd.DataFrame):
            pq_meta_cell = _df_to_bytes(meta_cell_df.reset_index())

        if isinstance(meta_cluster, pd.DataFrame):
            pq_meta_cluster = _df_to_bytes(meta_cluster.reset_index())
            kwargs.pop("meta_cluster")
            meta_cluster_df = meta_cluster

        if isinstance(umap_df, pd.DataFrame):
            pq_umap = _df_to_bytes(umap_df)

        if isinstance(meta_nbhd_df, pd.DataFrame):
            pq_meta_nbhd = _df_to_bytes(meta_nbhd_df.reset_index())

        parquet_traits = {}
        if pq_meta_cell is not None:
            parquet_traits["meta_cell_parquet"] = traitlets.Bytes(pq_meta_cell).tag(sync=True)
        if pq_meta_cluster is not None:
            parquet_traits["meta_cluster_parquet"] = traitlets.Bytes(pq_meta_cluster).tag(sync=True)
        if pq_umap is not None:
            parquet_traits["umap_parquet"] = traitlets.Bytes(pq_umap).tag(sync=True)
        if pq_meta_nbhd is not None:
            parquet_traits["meta_nbhd_parquet"] = traitlets.Bytes(pq_meta_nbhd).tag(sync=True)

        if parquet_traits:
            self.add_traits(**parquet_traits)

        super().__init__(**kwargs)

        # store DataFrames locally without syncing to the frontend
        self.meta_cell = meta_cell_df
        self.meta_nbhd = meta_nbhd_df
        self.nbhd = nbhd_gdf
        self.umap = umap_df
        if meta_cluster_df is not None:
            self.meta_cluster_df = meta_cluster_df

        # compute geojson for initial nbhd if provided
        if self.nbhd is not None:
            if "geometry_pixel" not in self.nbhd.columns:
                # Assuming `transformation_matrix` is your 3x3 numpy array
                a, b, tx = transformation_matrix[0]
                c, d, ty = transformation_matrix[1]

                coeffs = [a, b, c, d, tx, ty]

                self.nbhd["geometry_pixel"] = self.nbhd.geometry.apply(
                    lambda geom: affine_transform(geom, coeffs)
                )

            gdf_viz = deepcopy(self.nbhd)
            gdf_viz["geometry"] = gdf_viz["geometry_pixel"]
            gdf_viz.drop(columns=["geometry_pixel"], inplace=True)

            self.nbhd_geojson = json.loads(gdf_viz.to_json())

    # @traitlets.observe("nbhd")
    # def _on_nbhd_change(self, change):
    #     new = change["new"]
    #     if new is None:
    #         self.nbhd_geojson = {"type": "FeatureCollection", "features": []}
    #     else:
    #         self.nbhd_geojson = json.loads(new.to_json())

    def trigger_update(self, new_value):
        """
        Update the update_trigger traitlet with a new value.

        Parameters:
        - new_value: New value to trigger update with
        """
        # This method updates the update_trigger traitlet with a new value
        # You can pass any information necessary for the update, or just a timestamp
        self.update_trigger = new_value

    def update_cell_clusters(self, new_clusters):
        """
        Update cell clusters with new data.

        Parameters:
        - new_clusters: New cluster data to update with
        """
        # Convert the new_clusters to a JSON serializable format if necessary
        self.cell_clusters = new_clusters

    def close(self):  # pragma: no cover - cleanup depends on JS
        """Close the widget and notify the frontend to release resources."""
        with suppress(Exception):
            self.send({"event": "finalize"})
        super().close()

close()

Close the widget and notify the frontend to release resources.

Source code in src/celldega/viz/widget.py
274
275
276
277
278
def close(self):  # pragma: no cover - cleanup depends on JS
    """Close the widget and notify the frontend to release resources."""
    with suppress(Exception):
        self.send({"event": "finalize"})
    super().close()

trigger_update(new_value)

Update the update_trigger traitlet with a new value.

Parameters: - new_value: New value to trigger update with

Source code in src/celldega/viz/widget.py
253
254
255
256
257
258
259
260
261
262
def trigger_update(self, new_value):
    """
    Update the update_trigger traitlet with a new value.

    Parameters:
    - new_value: New value to trigger update with
    """
    # This method updates the update_trigger traitlet with a new value
    # You can pass any information necessary for the update, or just a timestamp
    self.update_trigger = new_value

update_cell_clusters(new_clusters)

Update cell clusters with new data.

Parameters: - new_clusters: New cluster data to update with

Source code in src/celldega/viz/widget.py
264
265
266
267
268
269
270
271
272
def update_cell_clusters(self, new_clusters):
    """
    Update cell clusters with new data.

    Parameters:
    - new_clusters: New cluster data to update with
    """
    # Convert the new_clusters to a JSON serializable format if necessary
    self.cell_clusters = new_clusters

clustergram_enrich(cgm)

Display a Clustergram widget and an Enrich widget side by side.

Parameters:

Name Type Description Default
cgm Clustergram

A Clustergram widget.

required

Returns:

Name Type Description
HBox HBox

Visualization display containing both widgets

Source code in src/celldega/viz/__init__.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def clustergram_enrich(
    cgm: Clustergram,
) -> HBox:
    """
    Display a `Clustergram` widget and an `Enrich` widget side by side.

    Args:
        cgm (Clustergram): A `Clustergram` widget.

    Returns:
        HBox: Visualization display containing both widgets
    """

    cgm.layout = Layout(width="600px")

    enrich = Enrich(gene_list=[], width=250)
    jslink((cgm, "selected_genes"), (enrich, "gene_list"))
    return HBox([cgm, enrich], layout=Layout(width="1000px"))

get_local_server()

Start a local HTTP server with CORS support and return the port number.

Returns:

Name Type Description
int int

The port number on which the server is running.

Source code in src/celldega/viz/local_server.py
31
32
33
34
35
36
37
38
39
40
41
42
43
def get_local_server() -> int:
    """
    Start a local HTTP server with CORS support and return the port number.

    Returns:
        int: The port number on which the server is running.
    """
    server = HTTPServer(("", 0), CORSHTTPRequestHandler)

    service = thr.Thread(target=server.serve_forever)
    service.start()

    return server.server_address[1]

landscape_clustergram(landscape, mat, width='600px', height='700px')

Display a Landscape widget and a Clustergram widget side by side.

Parameters:

Name Type Description Default
landscape Landscape

A Landscape widget.

required
cgm Clustergram

A Clustergram widget.

required
width str

The width of the widgets.

'600px'
height str

The height of the widgets.

'700px'

Returns:

Name Type Description
HBox

Visualization display containing both widgets

Example: See example Landscape-Matrix_Xenium notebook

Source code in src/celldega/viz/__init__.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def landscape_clustergram(landscape, mat, width="600px", height="700px"):
    """
    Display a `Landscape` widget and a `Clustergram` widget side by side.

    Args:
        landscape (Landscape): A `Landscape` widget.
        cgm (Clustergram): A `Clustergram` widget.
        width (str): The width of the widgets.
        height (str): The height of the widgets.

    Returns:
        HBox: Visualization display containing both widgets

    Example:
    See example [Landscape-Matrix_Xenium](../../../examples/brief_notebooks/Landscape-Matrix_Xenium) notebook
    """
    # Use `jslink` to directly link `click_info` from `mat` to `trigger_value` in `landscape_ist`
    jslink((mat, "click_info"), (landscape, "update_trigger"))

    # Set layouts for the widgets
    mat.layout = Layout(width=width)  # Adjust as needed
    landscape.layout = Layout(width=width, height=height)  # Adjust as needed

    return HBox([landscape, mat])