Landscape View Xenium¶
In [1]:
Copied!
%load_ext autoreload
%autoreload 2
%env ANYWIDGET_HMR=1
%load_ext autoreload
%autoreload 2
%env ANYWIDGET_HMR=1
env: ANYWIDGET_HMR=1
In [2]:
Copied!
import pandas as pd
import celldega as dega
import pandas as pd
import celldega as dega
In [3]:
Copied!
# base_url = 'https://raw.githubusercontent.com/broadinstitute/celldega_Xenium_Prime_Human_Skin_FFPE_outs/main/Xenium_Prime_Human_Skin_FFPE_outs'
base_url = 'https://raw.githubusercontent.com/broadinstitute/celldega_Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs_v2/main/Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs'
# base_url = 'https://raw.githubusercontent.com/broadinstitute/celldega_Xenium_Prime_Human_Skin_FFPE_outs/main/Xenium_Prime_Human_Skin_FFPE_outs'
base_url = 'https://raw.githubusercontent.com/broadinstitute/celldega_Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs_v2/main/Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs'
In [4]:
Copied!
landscape = dega.viz.Landscape(
technology='Xenium',
base_url = base_url,
height=500
)
landscape = dega.viz.Landscape(
technology='Xenium',
base_url = base_url,
height=500
)
In [5]:
Copied!
df_sig = pd.read_parquet('https://raw.githubusercontent.com/broadinstitute/celldega_Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs_v2/main/Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs/df_sig.parquet')
mat = dega.clust.Matrix(df_sig)
mat.norm(axis='col', by='total')
mat.norm(axis='row', by='zscore')
tmp = mat.cluster()
cgm = dega.viz.Clustergram(matrix=mat, width=500, height=500)
df_sig = pd.read_parquet('https://raw.githubusercontent.com/broadinstitute/celldega_Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs_v2/main/Xenium_Prime_Ovarian_Cancer_FFPE_XRrun_outs/df_sig.parquet')
mat = dega.clust.Matrix(df_sig)
mat.norm(axis='col', by='total')
mat.norm(axis='row', by='zscore')
tmp = mat.cluster()
cgm = dega.viz.Clustergram(matrix=mat, width=500, height=500)
In [6]:
Copied!
dega.viz.landscape_clustergram(landscape, cgm)
dega.viz.landscape_clustergram(landscape, cgm)
Out[6]:
In [ ]:
Copied!