TrainCnnFilters
TrainCnnFilters
- author
- Jonn Smith
- description
- A workflow for training the 1D and 2D CNN filtration methods in GATK.
Inputs
Required
bais(Array[File], required): GCS path to index files for the bam files containing the either the mapped reads from which variants were called, or a bam-out from the variant caller that produced the input VCF files.bams(Array[File], required): GCS path to bam files containing the either the mapped reads from which variants were called, or a bam-out from the variant caller that produced the input VCF files.ref_map_file(File, required): table indicating reference sequence and auxillary file locationstruth_beds(Array[File], required): GCS path to bed files with confident regions for the giventruth_vcfstruth_vcf_indices(Array[File], required): GCS path to index files for VCF files containing validated variant calls ("truth") for the corresponding called variants invcfs.truth_vcfs(Array[File], required): GCS path to VCF files containing validated variant calls ("truth") for the corresponding called variants invcfs.vcf_indices(Array[File], required): GCS path to index files for called variants on which to train / test / validate the CNN models.vcfs(Array[File], required): GCS path to VCF files containing called variants on which to train / test / validate the CNN models.
Optional
Create1DReferenceTensors.runtime_attr_override(RuntimeAttr?)Create2DReadTensors.runtime_attr_override(RuntimeAttr?)TrainCnn1D.runtime_attr_override(RuntimeAttr?)TrainCnn2D.runtime_attr_override(RuntimeAttr?)
Defaults
prefix(String, default="out")TrainCnn1D.optimizer_beta1(Float, default=0.9)TrainCnn1D.optimizer_beta2(Float, default=0.999)TrainCnn1D.optimizer_clipnorm(Float, default=1.0)TrainCnn1D.optimizer_epsilon(Float, default=1e-08)TrainCnn1D.optimizer_learning_rate(Float, default=0.0001)TrainCnn2D.optimizer_beta1(Float, default=0.9)TrainCnn2D.optimizer_beta2(Float, default=0.999)TrainCnn2D.optimizer_clipnorm(Float, default=1.0)TrainCnn2D.optimizer_epsilon(Float, default=1e-08)
Outputs
cnn_1d_tensors(Array[File])cnn_2d_tensors(Array[File])cnn_1d_model_json(File)cnn_1d_model_hd5(File)cnn_2d_model_json(File)cnn_2d_model_hd5(File)
Dot Diagram
