Gamgee
You miserable little maggot. I'll stove your head in!
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
rANS_byte.h
Go to the documentation of this file.
1 /* rans_byte.h originally from https://github.com/rygorous/ryg_rans
2  *
3  * This is a public-domain implementation of several rANS variants. rANS is an
4  * entropy coder from the ANS family, as described in Jarek Duda's paper
5  * "Asymmetric numeral systems" (http://arxiv.org/abs/1311.2540).
6  */
7 
8 /*-------------------------------------------------------------------------- */
9 
10 // Simple byte-aligned rANS encoder/decoder - public domain - Fabian 'ryg' Giesen 2014
11 //
12 // Not intended to be "industrial strength"; just meant to illustrate the general
13 // idea.
14 
15 #ifndef RANS_BYTE_HEADER
16 #define RANS_BYTE_HEADER
17 
18 #include <stdint.h>
19 
20 #ifdef assert
21 #define RansAssert assert
22 #else
23 #define RansAssert(x)
24 #endif
25 
26 // READ ME FIRST:
27 //
28 // This is designed like a typical arithmetic coder API, but there's three
29 // twists you absolutely should be aware of before you start hacking:
30 //
31 // 1. You need to encode data in *reverse* - last symbol first. rANS works
32 // like a stack: last in, first out.
33 // 2. Likewise, the encoder outputs bytes *in reverse* - that is, you give
34 // it a pointer to the *end* of your buffer (exclusive), and it will
35 // slowly move towards the beginning as more bytes are emitted.
36 // 3. Unlike basically any other entropy coder implementation you might
37 // have used, you can interleave data from multiple independent rANS
38 // encoders into the same bytestream without any extra signaling;
39 // you can also just write some bytes by yourself in the middle if
40 // you want to. This is in addition to the usual arithmetic encoder
41 // property of being able to switch models on the fly. Writing raw
42 // bytes can be useful when you have some data that you know is
43 // incompressible, and is cheaper than going through the rANS encode
44 // function. Using multiple rANS coders on the same byte stream wastes
45 // a few bytes compared to using just one, but execution of two
46 // independent encoders can happen in parallel on superscalar and
47 // Out-of-Order CPUs, so this can be *much* faster in tight decoding
48 // loops.
49 //
50 // This is why all the rANS functions take the write pointer as an
51 // argument instead of just storing it in some context struct.
52 
53 // --------------------------------------------------------------------------
54 
55 // L ('l' in the paper) is the lower bound of our normalization interval.
56 // Between this and our byte-aligned emission, we use 31 (not 32!) bits.
57 // This is done intentionally because exact reciprocals for 31-bit uints
58 // fit in 32-bit uints: this permits some optimizations during encoding.
59 #define RANS_BYTE_L (1u << 23) // lower bound of our normalization interval
60 
61 // State for a rANS encoder. Yep, that's all there is to it.
62 typedef uint32_t RansState;
63 
64 // Initialize a rANS encoder.
65 static inline void RansEncInit(RansState* r)
66 {
67  *r = RANS_BYTE_L;
68 }
69 
70 // Renormalize the encoder. Internal function.
71 static inline RansState RansEncRenorm(RansState x, uint8_t** pptr, uint32_t freq, uint32_t scale_bits)
72 {
73  uint32_t x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq; // this turns into a shift.
74  if (x >= x_max) {
75  uint8_t* ptr = *pptr;
76  do {
77  *--ptr = (uint8_t) (x & 0xff);
78  x >>= 8;
79  } while (x >= x_max);
80  *pptr = ptr;
81  }
82  return x;
83 }
84 
85 // Encodes a single symbol with range start "start" and frequency "freq".
86 // All frequencies are assumed to sum to "1 << scale_bits", and the
87 // resulting bytes get written to ptr (which is updated).
88 //
89 // NOTE: With rANS, you need to encode symbols in *reverse order*, i.e. from
90 // beginning to end! Likewise, the output bytestream is written *backwards*:
91 // ptr starts pointing at the end of the output buffer and keeps decrementing.
92 static inline void RansEncPut(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
93 {
94  // renormalize
95  RansState x = RansEncRenorm(*r, pptr, freq, scale_bits);
96 
97  // x = C(s,x)
98  *r = ((x / freq) << scale_bits) + (x % freq) + start;
99 }
100 
101 // Flushes the rANS encoder.
102 static inline void RansEncFlush(RansState* r, uint8_t** pptr)
103 {
104  uint32_t x = *r;
105  uint8_t* ptr = *pptr;
106 
107  ptr -= 4;
108  ptr[0] = (uint8_t) (x >> 0);
109  ptr[1] = (uint8_t) (x >> 8);
110  ptr[2] = (uint8_t) (x >> 16);
111  ptr[3] = (uint8_t) (x >> 24);
112 
113  *pptr = ptr;
114 }
115 
116 // Initializes a rANS decoder.
117 // Unlike the encoder, the decoder works forwards as you'd expect.
118 static inline void RansDecInit(RansState* r, uint8_t** pptr)
119 {
120  uint32_t x;
121  uint8_t* ptr = *pptr;
122 
123  x = ptr[0] << 0;
124  x |= ptr[1] << 8;
125  x |= ptr[2] << 16;
126  x |= ptr[3] << 24;
127  ptr += 4;
128 
129  *pptr = ptr;
130  *r = x;
131 }
132 
133 // Returns the current cumulative frequency (map it to a symbol yourself!)
134 static inline uint32_t RansDecGet(RansState* r, uint32_t scale_bits)
135 {
136  return *r & ((1u << scale_bits) - 1);
137 }
138 
139 // Advances in the bit stream by "popping" a single symbol with range start
140 // "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits",
141 // and the resulting bytes get written to ptr (which is updated).
142 static inline void RansDecAdvance(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
143 {
144  uint32_t mask = (1u << scale_bits) - 1;
145 
146  // s, x = D(x)
147  uint32_t x = *r;
148  x = freq * (x >> scale_bits) + (x & mask) - start;
149 
150  // renormalize
151  if (x < RANS_BYTE_L) {
152  uint8_t* ptr = *pptr;
153  do x = (x << 8) | *ptr++; while (x < RANS_BYTE_L);
154  *pptr = ptr;
155  }
156 
157  *r = x;
158 }
159 
160 // --------------------------------------------------------------------------
161 
162 // That's all you need for a full encoder; below here are some utility
163 // functions with extra convenience or optimizations.
164 
165 // Encoder symbol description
166 // This (admittedly odd) selection of parameters was chosen to make
167 // RansEncPutSymbol as cheap as possible.
168 typedef struct {
169  uint32_t x_max; // (Exclusive) upper bound of pre-normalization interval
170  uint32_t rcp_freq; // Fixed-point reciprocal frequency
171  uint32_t bias; // Bias
172  uint16_t cmpl_freq; // Complement of frequency: (1 << scale_bits) - freq
173  uint16_t rcp_shift; // Reciprocal shift
174 } RansEncSymbol;
175 
176 // Decoder symbols are straightforward.
177 typedef struct {
178  uint16_t start; // Start of range.
179  uint16_t freq; // Symbol frequency.
180 } RansDecSymbol;
181 
182 // Initializes an encoder symbol to start "start" and frequency "freq"
183 static inline void RansEncSymbolInit(RansEncSymbol* s, uint32_t start, uint32_t freq, uint32_t scale_bits)
184 {
185  RansAssert(scale_bits <= 16);
186  RansAssert(start <= (1u << scale_bits));
187  RansAssert(freq <= (1u << scale_bits) - start);
188 
189  // Say M := 1 << scale_bits.
190  //
191  // The original encoder does:
192  // x_new = (x/freq)*M + start + (x%freq)
193  //
194  // The fast encoder does (schematically):
195  // q = mul_hi(x, rcp_freq) >> rcp_shift (division)
196  // r = x - q*freq (remainder)
197  // x_new = q*M + bias + r (new x)
198  // plugging in r into x_new yields:
199  // x_new = bias + x + q*(M - freq)
200  // =: bias + x + q*cmpl_freq (*)
201  //
202  // and we can just precompute cmpl_freq. Now we just need to
203  // set up our parameters such that the original encoder and
204  // the fast encoder agree.
205 
206  s->x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq;
207  s->cmpl_freq = (uint16_t) ((1 << scale_bits) - freq);
208  if (freq < 2) {
209  // freq=0 symbols are never valid to encode, so it doesn't matter what
210  // we set our values to.
211  //
212  // freq=1 is tricky, since the reciprocal of 1 is 1; unfortunately,
213  // our fixed-point reciprocal approximation can only multiply by values
214  // smaller than 1.
215  //
216  // So we use the "next best thing": rcp_freq=0xffffffff, rcp_shift=0.
217  // This gives:
218  // q = mul_hi(x, rcp_freq) >> rcp_shift
219  // = mul_hi(x, (1<<32) - 1)) >> 0
220  // = floor(x - x/(2^32))
221  // = x - 1 if 1 <= x < 2^32
222  // and we know that x>0 (x=0 is never in a valid normalization interval).
223  //
224  // So we now need to choose the other parameters such that
225  // x_new = x*M + start
226  // plug it in:
227  // x*M + start (desired result)
228  // = bias + x + q*cmpl_freq (*)
229  // = bias + x + (x - 1)*(M - 1) (plug in q=x-1, cmpl_freq)
230  // = bias + 1 + (x - 1)*M
231  // = x*M + (bias + 1 - M)
232  //
233  // so we have start = bias + 1 - M, or equivalently
234  // bias = start + M - 1.
235  s->rcp_freq = ~0u;
236  s->rcp_shift = 0;
237  s->bias = start + (1 << scale_bits) - 1;
238  } else {
239  // Alverson, "Integer Division using reciprocals"
240  // shift=ceil(log2(freq))
241  uint32_t shift = 0;
242  while (freq > (1u << shift))
243  shift++;
244 
245  s->rcp_freq = (uint32_t) (((1ull << (shift + 31)) + freq-1) / freq);
246  s->rcp_shift = shift - 1;
247 
248  // With these values, 'q' is the correct quotient, so we
249  // have bias=start.
250  s->bias = start;
251  }
252 
253  s->rcp_shift += 32; // Avoid the extra >>32 in RansEncPutSymbol
254 }
255 
256 // Initialize a decoder symbol to start "start" and frequency "freq"
257 static inline void RansDecSymbolInit(RansDecSymbol* s, uint32_t start, uint32_t freq)
258 {
259  RansAssert(start <= (1 << 16));
260  RansAssert(freq <= (1 << 16) - start);
261  s->start = (uint16_t) start;
262  s->freq = (uint16_t) freq;
263 }
264 
265 // Encodes a given symbol. This is faster than straight RansEnc since we can do
266 // multiplications instead of a divide.
267 //
268 // See RansEncSymbolInit for a description of how this works.
269 static inline void RansEncPutSymbol(RansState* r, uint8_t** pptr, RansEncSymbol const* sym)
270 {
271  RansAssert(sym->x_max != 0); // can't encode symbol with freq=0
272 
273  // renormalize
274  uint32_t x = *r;
275  uint32_t x_max = sym->x_max;
276 
277  if (x >= x_max) {
278  uint8_t* ptr = *pptr;
279  do {
280  *--ptr = (uint8_t) (x & 0xff);
281  x >>= 8;
282  } while (x >= x_max);
283  *pptr = ptr;
284  }
285 
286  // x = C(s,x)
287  // NOTE: written this way so we get a 32-bit "multiply high" when
288  // available. If you're on a 64-bit platform with cheap multiplies
289  // (e.g. x64), just bake the +32 into rcp_shift.
290  //uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> 32) >> sym->rcp_shift;
291 
292  // The extra >>32 has already been added to RansEncSymbolInit
293  uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> sym->rcp_shift);
294  *r = x + sym->bias + q * sym->cmpl_freq;
295 }
296 
297 // Equivalent to RansDecAdvance that takes a symbol.
298 static inline void RansDecAdvanceSymbol(RansState* r, uint8_t** pptr, RansDecSymbol const* sym, uint32_t scale_bits)
299 {
300  RansDecAdvance(r, pptr, sym->start, sym->freq, scale_bits);
301 }
302 
303 // Advances in the bit stream by "popping" a single symbol with range start
304 // "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits".
305 // No renormalization or output happens.
306 static inline void RansDecAdvanceStep(RansState* r, uint32_t start, uint32_t freq, uint32_t scale_bits)
307 {
308  uint32_t mask = (1u << scale_bits) - 1;
309 
310  // s, x = D(x)
311  uint32_t x = *r;
312  *r = freq * (x >> scale_bits) + (x & mask) - start;
313 }
314 
315 // Equivalent to RansDecAdvanceStep that takes a symbol.
316 static inline void RansDecAdvanceSymbolStep(RansState* r, RansDecSymbol const* sym, uint32_t scale_bits)
317 {
318  RansDecAdvanceStep(r, sym->start, sym->freq, scale_bits);
319 }
320 
321 // Renormalize.
322 static inline void RansDecRenorm(RansState* r, uint8_t** pptr)
323 {
324  // renormalize
325  uint32_t x = *r;
326 
327  if (x < RANS_BYTE_L) {
328  uint8_t* ptr = *pptr;
329  do x = (x << 8) | *ptr++; while (x < RANS_BYTE_L);
330  *pptr = ptr;
331  }
332 
333  *r = x;
334 }
335 
336 #endif // RANS_BYTE_HEADER
uint16_t freq
Definition: rANS_byte.h:179
#define RANS_BYTE_L
Definition: rANS_byte.h:59
uint32_t x_max
Definition: rANS_byte.h:169
Definition: rANS_byte.h:177
uint32_t RansState
Definition: rANS_byte.h:62
#define RansAssert(x)
Definition: rANS_byte.h:23
uint16_t start
Definition: rANS_byte.h:178
uint32_t rcp_freq
Definition: rANS_byte.h:170
uint16_t cmpl_freq
Definition: rANS_byte.h:172
uint16_t rcp_shift
Definition: rANS_byte.h:173
Definition: rANS_byte.h:168
uint32_t bias
Definition: rANS_byte.h:171